参考设计
(28)
Dual Phase Synchronous Buck
PMP7884: This is a dual-phase, synchronous buck converter with an input voltage range of 30.6V-to-37.4Vin and an output of 9Vout @ 15A.
36-60V Input, 8.5V/400mA Synchronous Buck Reference Design
PMP10847: This design uses the LM5017 to generate an 8.5V at 400mA rail from a 36V-60Vdc source. The constant on-time control method of the LM5017 minimizes the component count, resulting in a simple design. This supply achieves a peak efficiency over 87%.
12V/400W Dual-Phase 1/4 Brick Buck Converter Reference Design Delivers 97% Peak Efficiency
PMP7819: This 400W ¼ brick DC/DC converter leverages the LM5119’s dual-phase capability to drive a 33A load in an industry-standard ¼ brick module footprint. This compact design delivers 97% peak efficiency while maintaining balanced current through each phase, which reduces thermal stress and enables lower system cost by eliminating the need to over-design the surrounding power components.
High Density 160 A (210 A peak) 4 Phase DC-DC Buck Converter with PMBus Interface Reference Design
PMP9131: Fixed frequency voltage mode control is used for CPU, Memory and ASIC applications where a predictable frequency and/or synchrnization to an external clock is needed. Four high-current synchronous power stages provide the high currents and low losses needed for these applications. Multi-phase also allows output ripple cancellation and effective higher bandwidth control for a given switching frequency. PMP9131 focuses on ease of electrical testing and ability to make changes "on the fly" thru the PMBus interface. On-board bias supplies and a high speed dynamic load round out the rich test interface.
860W Dual Phase Synchronous Buck Converter in Quarter Brick Footprint
PMP9260: PMP9260 is a dual-phase synchronous buck converter utilizing the LM5119 dual synchronous buck controller I.C. The design accepts an input voltage of 33V to 60V and provides a 28V output capable of supplying 30A of current to the load. This represents a maximum power density design of 860W in a quarter brick footprint. The maximum component height is set by the Coilcraft VER2923-103 inductors at 0.875 in.
Small Form-Factor Reinforced Isolated IGBT Gate Drive Reference Design for 3 Phase Inverter
TIDA-00446: The TIDA-00446 reference design consists of six reinforced isolated IGBT gate drivers along with dedicated gate drive power supplies. This compact reference design is intended to control IGBT’s in 3-phase inverters like AC drives, uninterruptible power supplies (UPS) and solar inverters. The design uses a reinforced isolated IGBT gate driver with DESAT feature and built-in miller clamp protection, enabling use of unipolar supply voltage for the gate drive. Open loop push pull topology based power supply for each gate driver provides flexibility in PCB routing. The push pull transformer driver used in TIDA-00446 operates at 420 khz which helps in reducing the size of the isolation transformer leading to compact power supply solution. Gate drive power supply can be disabled to facilitate safe torque off (STO).
3 LED Driver
PMP7866: This is an LED driver/converter that can power up to three high output LEDs. It has an input voltage range of 9V-to-16Vin and an output of 10.5Vout @ 1A.
High-Efficiency Adjustable Output Synchronous Boost Converter Reference Design
PMP10538: PMP10538 is a Single-Phase Synchronous Boost Converter using the LM5122 controller IC. The design accepts an input voltage of 18Vin to 20Vin and provides an output of 30Vout to 54Vout, capable of supplying 1.7A of continuous current to the load or 0A to 3.4A Max. The output voltage can be adjusted between 30Vout and 54Vout by driving the Vadj. input of the Op-Amp circuit between 0V and 3V.
12Vin 1V 50A TPS40422 & Power Block II CSD87384 2 Phases w/PMBus Interface Reference Design
PMP8999: It is a two phase Synchronous Buck converter to provide high current with low ripple and fast dynamic response for high speed processor core applications. Same approach can also be used to power Memory and Input / Output power voltages, typically 1.2V to 3.3V. The two phase interleave reduces output ripple and allows faster response to rapidly changing loads. The two phases distribute power loss to eliminate need for added heat sink hardware. The "Project File" for the TPS40422 to communicate with TI's Fusion GUI is included. Output voltage and current limit can be adjusted and monitored thru the GUI. Additional settings can be accessed thru the same GUI. Test Report includes thermal images to show load capability, both with and without fan cooling. Testing done at 12Vin, where voltage stresses, losses and output ripple greatest. Design will work also at 5Vin with same high speed control loop, due to Input Voltage Feed Forward in the TPS40422.
14-Channel Active Cell Balance Battery Management Reference Design
TIDA-00239: Active Balance chipset for use in large format Lithium-ion batteries that provides monitoring, balancing, and communications. With precise and robust active balancing, the Active Balance BMS is capable of bidirection power transfer at each cell. Each EM1401EVM can manage 6 to 14 cells (60V max) for Li-ion battery applications. The EM1401EVM modules can be stacked up to 1300V. The system provides fast cell balancing, diagnostics, and module to controller communication. Independent protection circuitry is also provided.
Cost-optimized power supply solution for entry-level core application processor-based ADAS systems
TIDA-00346: The TIDA-00346 design provides the power supply rails necessary for typical entry-level application processors in automotive advanced driver assistance systems (ADAS) applications. The design uses several individual DC/DC voltage regulators as well as load switches and linear regulators (LDOs) to provide fixed-supply voltages to the processing cores and other functions of the system-on-a-chip (SoC). Additional rails for DDR memory supply and termination and a CAN Transceiver are also implemented. Two LM3880 simple power sequencers provide power up and power down sequencing. The design is optimized for automotive applications and can operate with input voltages from 4V to 18V (transients up to 40V).
High Density 4A DC-DC Buck Converter with PMBus Interface Reference Design
PMP11140: The PMP11140 reference design shows 1.8V 4A (3A without fan) for CPU I/O and other applications in a 22 cm by 12.5 cm single sided footprint. Control allows external synchronization to allow improved management of system noise. A rich Test Interface is provided including an on board dynamic load.
High Density 200 A (255 A Peak) 6 Phase DC-DC Buck Converter with PMBus Interface Reference Design
PMP9738: Advanced DCAP+ control is used to provide the high speed dynamic control needed for CPU, Memory and ASIC applications. Six high current synchronous power stages provide the high currents and low losses needed for these applications. Multi-phase also allows output ripple cancellation and effective higher bandwidth control for a given switching frequency. PMP9738 focuses on ease of electrical testing and ability to make changes "on the fly" thru the PMBus interface. On board bias supplies and a high speed dynamic load round out the rich test interface.
Class 4- High power PoE, active clamp forward converter 8V@3A
PMP6584: PMP6584 is a high power (non-standard) Power Over Ethernet (POE) active clamp forward converter. It features the TPS23756, which is a combination of a POE Powered Device (PD) controller and PWM controller. It also utilizes an ISO721 digital isolator and TPS28225 synchronous MOSFET driver. The input accepts standard POE voltage or a 24VDC-48VDC auxiliary voltage. The output power is an isolated 8VDC at 3A.
High Density 600mV 200 A 5-6 Phase DC-DC Buck Converter with PMBus Interface Reference Design
PMP10393: Advanced DCAP+ control is used to provide the high speed dynamic control needed for CPU, Memory and ASIC applications. Up to six high current synchronous power stages provide the high currents and low losses needed for these applications. Multi-phase also allows output ripple cancellation and effective higher bandwidth control for a given switching frequency. PMP10393 has same hardware as 1.0V PMP9738 but demonstrates operation at 600mV output up to 200 A off 12V input. Fixed on time mode and reduced switching frequency at 600mV help reduce losses and improve thermal balance between FETs. Testing at 120A output with 3 & 4 phases and lower cost Power Stage also included. Design focuses on ease of electrical testing and ability to make changes "on the fly" thru the PMBus interface. On board bias supplies and a high speed dynamic load round out the rich test interface.
High Density 900mV 220 A 6 Phase DC-DC Buck Converter with PMBus Interface Reference Design
PMP11208: PMP11208 has same hardware as 1.0V PMP9738 and 0.6V PMP10393 but demonstrates operation at 900mV output up to 240 A off 11V, 12V and 13V inputs. While the design is in quasi fixed frequency mode for 1.0Vout and in fixed on time mode for 600mVout, it can be in either mode at 900mVout depending upon load and actual Vin. Testing focused upon detailed static and dynamic loading in and between both modes to show a seamless transition between the two modes.
Isolated Forward Converter Reference Design
PMP7806: The PMP7806 reference design is a Forward which uses a LM5025A and was intended for Metering applications. It can generate an Isolated 15 volt output at 3 Amps from an input 16 to 32 Volts DC.