Reference Designs(20)
TIDA-00254 Accurate Point Cloud Generation for 3D Machine Vision Applications using DLP® Technology | TI.com
TIDA-00254: The 3D Machine Vision reference design employs Texas Instruments DLP® Advanced Light Control Software Development Kit (SDK) for LightCrafter™ series controllers, which allows developers to easily construct 3D point clouds by integrating TI’s digital micromirror device (DMD) technology with cameras, sensors, motors or other peripherals. The highly differentiated 3D Machine Vision system utilizes the DLP® LightCrafter™ 4500 evaluation module (EVM), featuring the DLP4500 WXGA chipset, and enables flexible control of high resolution, accurate patterns for industrial, medical, and security applications.
High Resolution, Portable Light Steering Reference Design using DLP Technology
DLP4500-C350REF: This reference design, featuring the DLP® 0.45” WXGA chipset and implemented in the DLP® LightCrafter™ 4500 evaluation module (EVM), enables flexible control of high resolution, accurate patterns for industrial, medical, and scientific applications. With a free USB-based GUI and API, developers can easily integrate TI’s innovative digital micromirror device (DMD) technology with cameras, sensors, motors, and other peripherals to create highly differentiated 3D machine vision systems, 3D printers, and augmented reality displays.
TIDEP0015 Capacitive Touchscreen Display Reference Design | TI.com
TIDEP0015: Capacitive touchscreen displays generally provide a higher quality and better user experience than traditional resistive touchscreen displays. This reference design shows how to interface a capacitive touchscreen display to the Sitara AM437x processors. The display has an integrated touchscreen controller that interfaces with the AM437x via its I2C port.
DLP4500-C350REF High Resolution, Portable Light Steering Reference Design using DLP Technology | TI.com
DLP4500-C350REF: This reference design, featuring the DLP® 0.45” WXGA chipset and implemented in the DLP® LightCrafter™ 4500 evaluation module (EVM), enables flexible control of high resolution, accurate patterns for industrial, medical, and scientific applications. With a free USB-based GUI and API, developers can easily integrate TI’s innovative digital micromirror device (DMD) technology with cameras, sensors, motors, and other peripherals to create highly differentiated 3D machine vision systems, 3D printers, and augmented reality displays.
TIDA-01171 AC-Coupled RS-485 Reference Design | TI.com
TIDA-01171: The TIDA-01171 reference design allows for RS-485 communication over an AC-coupled link, even at very low data rates. This allows for nodes to communicate even when large ground potential differences exist between nodes. Using AC coupling also helps to protect transceivers from bus faults that can result in direct shorts to high-voltage power supplies.
TIDEP0050 EnDat 2.2 System Reference Design | TI.com
TIDEP0050: The TIDEP0050 TI Design implements the EnDat 2.2 Master protocol stack and hardware interface solution based on the HEIDENHAIN EnDat 2.2 standard for position or rotary encoders. The design is composed of the EnDat 2.2 Master protocol stack, half-duplex communications using RS485 transceivers and the line termination implemented on the Sitara AM437x Industrial Development Kit. This design is fully tested to meet the HEIDENHAIN EnDat 2.2 standard. Along with EnDat position feedback, the AM437x IDK is also able to support industrial communications and motor drive as described in the AM437x Single-Chip Motor-Control Design Guide.
TIDA-03030 USB Type-C™ Power-Path Protection With Audio Accessory Support Reference Design | TI.com
TIDA-03030: The TIDA-03030 reference design provides a robust protection solution for the power path in USB Type-C™ applications. The design protects the power path from overvoltage, overcurrent, hot-plug, and reverse-current events by leveraging the TPS25923 (eFuse) and CSD17571Q2 (reverse-blocking FET). The system solution emulates a downstream facing port (DFP) and is able to detect the connection of an upstream facing port (UFP) device. The TIDA-03030 reference design also supports analog audio for USB Type-C audio accessories. The flexible VBUS protection with audio accessory functionality is achievable within a 20 mm x 20 mm, four-layer, single-sided solution.
TIDEP0025 Single Chip Drive for Industrial Communications and Motor Control | TI.com
TIDEP0025: This TI design implements a hardware interface solution based on the HEIDENHAIN EnDat 2.2 standard for position or rotary encoders. The platform also allows designers to implement real-time EtherCAT communications standards in a broad range of industrial automation equipment. It enables designers with a low foot print, low power and single chip solution in applications such as industrial automation, factory automation or industrial communication.
Single Chip Drive for Industrial Communications and Motor Control
TIDEP0025: This TI design implements a hardware interface solution based on the HEIDENHAIN EnDat 2.2 standard for position or rotary encoders. The platform also allows designers to implement real-time EtherCAT communications standards in a broad range of industrial automation equipment. It enables designers with a low foot print, low power and single chip solution in applications such as industrial automation, factory automation or industrial communication.
EnDat 2.2 System Reference Design
TIDEP0050: The TIDEP0050 TI Design implements the EnDat 2.2 Master protocol stack and hardware interface solution based on the HEIDENHAIN EnDat 2.2 standard for position or rotary encoders. The design is composed of the EnDat 2.2 Master protocol stack, half-duplex communications using RS485 transceivers and the line termination implemented on the Sitara AM437x Industrial Development Kit. This design is fully tested to meet the HEIDENHAIN EnDat 2.2 standard. Along with EnDat position feedback, the AM437x IDK is also able to support industrial communications and motor drive as described in the AM437x Single-Chip Motor-Control Design Guide.
Accurate Point Cloud Generation for 3D Machine Vision Applications using DLP® Technology
TIDA-00254: The 3D Machine Vision reference design employs Texas Instruments DLP Software Development Kit (SDK) allowing developers to easily construct 3D point clouds by integrating TI’s digital micromirror device (DMD) technology with cameras, sensors, motors or other peripherals. The highly differentiated 3D Machine Vision systems utilizes the DLP® LightCrafter™ 4500 evaluation module (EVM), featuring the DLP® 0.45” WXGA chipset, and enables flexible control of high resolution, accurate patterns for industrial, medical, and security applications.
TIDA-00862 RS-485 Full Duplex Over Two Wires Reference Design | TI.com
TIDA-00862: The design enables full duplex RS-485 communications over a single pair of conductors rather than four by utilizing bus contention. By adding small-valued serial resistors to the bus lines to limit currents, a tri-stated differential bus is allowed and the SN65HVD96 SymPol transciver can be used to detect a state of bus contention. Simple digital logic and analog filtering techniques enable both transceivers to drive and receive from eachother simultaneously without the need for 2 additional bus wires.
Capacitive Touchscreen Display Reference Design
TIDEP0015: Capacitive touchscreen displays generally provide a higher quality and better user experience than traditional resistive touchscreen displays. This reference design shows how to interface a capacitive touchscreen display to the Sitara AM437x processors. The display has an integrated touchscreen controller that interfaces with the AM437x via its I2C port.
TIDEP0078 OPC UA Data Access Server for AM572x Reference Design | TI.com
TIDEP0078: OPC UA is an industrial machine-to-machine protocol designed to allow interoperability and communication between all machines connected under Industry 4.0. The TIDEP0078 TI Design demonstrates use of the MatrikonOPC™ OPC UA server development kit (SDK) to allow communications using an OPC UA data access (DA) server running embedded in a project or design. The OPC UA DA deals with real-time data and is best suited for industrial automation applications where time is an important aspect of the data. A reference OPC UA server implementation is provided that accesses the GPIO capabilities of the AM572x IDK. The reference code can be extended to provide an OPC UA interface to any data the AM572x IDK board can access including data acquired through Profibus, RS-485, CAN bus, and industrial Ethernet-based protocols such as EtherCAT™ or PROFINET™ using the Programmable Real-time Unit Industrial Communication Subsystems (PRU-ICSS).